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orbit can be defined by the set of points 

r1=(5/8,5/8,5/8), 

r3=(5/8,13/8,5/8), 

r5=(1/8,5/8,5/8), 

r7=(1/8,13/8,5/8), 

r9=(5/8,1/8,5/8), 

r11=(5/8,9/8,5/8), 

r 2 = ( 1 3 / 8 , 5 / 8 , 5 / 8 ) ,  

r4 = (13/8,13/8,5/8), 

r 6 = (9/8,5/8,5/8), 

r8 = (9/8,13/8,5/8), 

rl0 = (13/8,1/8,5/8), 

rl 2 = (13/8 ,9 /8 ,5 /8) ,  

(A4) 

r13=(5/8,5/8,1/8), r14=(13/8,5/8,1/8), 

r15 = (5/8,13/8,1/8), r l6  = (13/8,13/8,1/8). 

These points are given not by their Cartesian coordi- 
nates but rather by contravariant coordinates rela- 
tive to the oblique-angle system of reference 
( a l , a 2 , a 3 ) ,  i.e. if r =/xla~ + #.2a2 +/.t3a3, then we 
indicate three numbers (/z~,/z2,/z3). Acting on the 
points (A4) with the operations of the group Go = 
C2/m (V ' /V= 4), we obtain the following splitting: 

R g = {l[2/m}, R 2 = {212/m}, R 3 = {3,411-}, 

R4o = {5,6[m}, R~ = {7,812 }, (,45) 

R6={9,16,11,13 1}, R7={10,15,12,14 1}. 

The numbers of the points of the R~ orbit from the 
set (A4) and the stabilizer that corresponds to its 
starting point are given for each R~ in the braces. 

The splitting (A5) generates the scheme (1.3). Note 
that, for conjugate subgroups G~ = go iGDgo 
(go E G), which are the symmetry groups of different 
domains of the Go phase, the same splitting scheme 
corresponds to them, in spite of the difference in 

correspondence between the points of the orbit R 
and the orbits R~. 
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Abstract 

Superspace groups introduced for usual modulated 
structures have recently been applied to the analysis 
of composite crystals. This review describes the 
method of composite-crystal analysis based on the 
superspace group. This method is efficient for the 
analysis of any (incommensurate or commensurate) 
composite crystals. The method is analogous to that 
for the modulated structure in many respects. The 
description of composite crystals in superspace, 
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determination of their superspace groups and unified 
setting of the unit vectors are mentioned. Two pos- 
sible approximations and a relation between the 
superspace and space groups for commensurate com- 
posite crystals are discussed. Space groups of 
chimney-ladder structures with different periods are 
derived from a single superspace group by the appli- 
cation of this relation. Possible superspace groups 
for known composite structures are deduced from 
the space groups of average substructures. Finally, 
the refinement method is discussed. 
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1. Introduction 

'Composite crystal structure' is a generic name for 
misfit layer structures, intergrowth compounds, ver- 
nier structures and chimney-ladder structures that 
have two or more mutually interpenetrating sub- 
structures with incommensurate or commensurate 
periods along some (one or two) directions. Each 
substructure is modulated by the interaction with the 
others. Therefore, this is a general case of modulated 
structures. (Fig. 1). 

The composite crystal structure is found in 
minerals, electron compounds, synthetic inorganic 
and organic compounds (Makovicky & Hyde, 1981; 
Hyde & Anderson, 1989; Peffirek, Maly, Coppens, 
Bu, Cisarova & Frost-Jensen, 1991). For example, 
cannizzarite {[(Pb,Bi)S]~[(Pb,Bi)2S3] with x = 
1.7-1.71}, valleriite {[(Mg,A1),(OH)2]~[(Fe,Cu)S2] 
with x=  1.53} and cylindrite {[(Pb,Ag,Sn,Sb,- 
Fe)S]~[(Sn,Sb,Fe)S2]} are known to have composite 
crystal structures consisting of two substructures, 
each enclosed by square brackets. These are misfit 
layer structures in which two layers alternate in a 
direction normal (or nearly normal) to the layer and 
have periods incommensurate with each other. The 
other early known examples are chimney-ladder 
structures {[V]lv[Ge]31, [Mo]9[Ge]16, [Te]4[Si]7, 
[Rh]lT[Ge]22 etc.} in which rows of groups III and IV 

PbS VS2 

PbS VS 2 

(a) 

PbS 

(b) 
VS 2 PbS 

, a 1 

, a 2 

Fig. 1. Structure of  [PbS]~[VS2] with x = 1.12 projected along 
(a) the a axis and (b) the b axis. 

elements (the 'ladders') are inserted into channels 
(the 'chimneys') in transition metals. These so-called 
electron compounds are examples of commensurate 
composite crystals, though the superstructure period 
is very large (> 100 A) in some cases. A commen- 
surate composite crystal is called a vernier structure. 
There are many other synthetic composite crystals, in 
particular, in sulfides. Some of them were known in 
the 1970's {[LaS]x[frS2], [Ba]x[FeS2], [(Mg,A1)- 
(OH)2]~[(Fe,Cu)S2]}; others have recently been exten- 
sively studied [TS]~[NbS2], T= Sn, La, Ce, Ho, Y, 
Bi; [ TS]~[TaS2], T = Pb, Sm, La, Ce, Bi; [ TS]x[TiS2], 
T = Pb, Sn; [PbS]x[VS2]; [LaS]x[CrS2]; with x=  1.10- 
1.17 (Wiegers & Meerschaut, 1992; van Smaalen, 
1992). After the discovery of superconducting oxides, 
several oxide composite crystals were synthesized as 
byproducts of superconducting oxides. These are 
[M2CuzO3]x[CuO2] [M=(Bi,Sr,Ca) and Sr] and 
[Ba],,[(Cu,Pt)O3]. It was shown recently that the 
superconducting oxides Bi2Sr2CuO6 + x and 
Bi2(Sr,Ca)3Cu208+x are also well described as com- 
posite crystals, [Bi2Sr2CuO4][O]y and [Biz(Sr,Ca)3- 
CuzO6][O]y (y=2.2), respectively, rather than 
modulated structures (Walker & Que, 1992). In these 
cases, one substructure is composed of O atoms in 
Bi-O layers and the other of the remaining atoms. In 
[Y(O,F)][(O,F)]y and [Zr(N,F)][(N,F)]; with y =  
1.13-1.22, one substructure is also composed only of 
anions. Organic compounds [I]x[TTF], [Br]~[TTF], 
[I]x[BEDO-TTF], [I]x[Bz9M2(CHC13)] (M = K, NH4, 
Na), [Hg]~[ET(SCN)2] and [Hg]x[ETBr2], are known 
to have composite crystal structures (see Table 1).* 

A characteristic feature of the composite crystal 
structure in the diffraction pattern is that there exist 
two (or more) sets of three-dimensional sublattices of 
prominent reflections caused by interpenetrating sub- 
structures. These so-called main reflections distin- 
guish the composite crystal from the usual crystal 
and the modulated structure. In addition to the main 
reflection, weak satellite reflections are observed, in 
particular by electron diffraction, showing the exist- 
ence of the modulation caused by the interaction 
between the substructures. In some cases the satellite 
reflections are not observed in X-ray diffraction pat- 
terns (Fig. 2). 

Several commensurate composite crystals were 
analyzed as superstructures in the 1960's and 1970's. 
On the other hand, incommensurate composite crys- 
tals have been determined by treating each substruc- 
ture individually on the basis of its own space group. 
Therefore, the modulation is neglected in this treat- 
ment. These classical methods, however, often 
encounter difficulties in the structure determination. 

* T T F  = tetrathiafulvalene; BEDO-TTF = 3,4;3',4'-bis(ethy- 
lenedioxy)-2,2',5,5'-tetrathiafulvalene; ET = BEDT-TTF = 3,4; 
3',4'-bis(ethylenedithio)-2,2',5,5'-tetrathiafulvalene; Bz = benzoyl. 
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Table 1. Examples of possible superspace 

C o m p o u n d  Superspace group Reference 

(a) Composi te  crystals with two substructures 

[SnS]~[NbS2]~f ,.c,.,~. , ,c , ,~  ~v~ T i t  . 2 r ,  ITs van Smaalen (1989), Meetsma, 
Wiegers, Haange & de Boer (1989) 

[LaS]~[NbS~]t ,c,,,~..,, r , ~  I TTI • lv1 TTs 

[PbS]~rNbS~] ,o, ,- .  , . . , .~  I TTI • 2VJ TTs 

[CcSL[NbS: ] ,o,2,.,,e,~2~ ,~ YI1 • ,+yl TTs 

[HoSI,[NbS2]f MC~ : MC~ 

[YS]x[NbS2] t ~  : M q 

[BiSel,[NbSea] . + , r , . ~ .  ~..r.,2,. ~v~ TTl • ~v,~ I ' l l  

[PbS~TaS~] ,.Fm2~. ~.Fm~ ~v+t TTI  . . t v l  TTI 

M TTI . M  TTI [SmS]~[TaS2] ~mv.. e.a~ 

[LaS]~[TaS2] rCm~. , . , r , .~  TTI • ~v~  Tls 

[CeSL[TaS2] .c=2~. ~ ~F~2= • YII • ~vJ TTs 

[BiS]~[raS~] rDAm2m'DAm2"mTTl "~- TT ,  

[BiSe]~[TaSe2] , A~Fm2m. ll . F m 2 m  ~v+e TTI .zv+t TTI  

[PbS]~[TiS:]f ,,,"~ws T . . . . .  ,w.~ ,=-"2 T/m 

[SnS]~[TiS2] l q  : M r [  

[PbS]~VS2]f M q : l ~  

[LaS~CrS2]f M ~ :  M ~  

Meershaut et al. (1989), 
Meershaut, Rabu et al. (1990), 
Wiegers, Meetsma, Haange, 
van Smaalen et al. (1990), 
van Smaalen (1991a) 

Wiegers, Meetsma, Haange & 
de Boer (1989), Meerschaut, 
Guemas, Auriel & Rouxel (1990), 
Wiegers, Meetsma, Haange, 
van Smaalen et al. (1990) 

Wiegers, Meetsma, Haange & 
de Boer (1990) 

van Smaalen & Petfirek (1992)~: 
Rabu, Meerschaut & Rouxel (1990)~ 

Zhou et al. (1992) 

Wulff, Meetsma, van Smaalen, 
Haange, de Boer & Wiegers 
(1990) 

Wiegers, Meetsma, Haange & 
de Boer (1991) 

de Boer, Meetsma, Zeinstra, 
Haange & Wiegers (1991) 

Wiegers, Meetsma, Haange & 
de Boer (1990) 

Gotoh et al. (1992)~ 

Zhou et al. (1992) 

Wiegers, Meetsma, van Smaalen, 
Haange & de Boer (1990), van 
Smaalen, Meetsma, Wiegers & 
de Boer (1991) 

Wiegers, Meetsma, de Boer, van 
Smaalen & Haange (1991)~ 

Onoda et al. (1990)~ 

Kato, Kawada & Takahashi (1977), 
Kato (1990)~ 

C o m p o u n d  Superspace group 

(b) Composi te  crystals with three substructures 

[ M3CrX3]~[ M3X]y- pe6 . . . .  l ~ l m .  DP6/m " ~  2 - ' ~  2 ' ' ~  2 Brouwer & Jellinek (1977) 
[CrTX,2] 

(M = Ba,Sr,Eu,Pb; Brouwer & Jellinek (1979) 
X = S ,  Se) 

[Hg]~[Hg]~[AsFd 

groups for known composite crystals 

Reference 

[MS]~[M2S3] M ~  '~: MC~,( ' Matzat (1979) 
[M -- (Pb,Bi)] 

[Ba]~[FeS2]'P ,-rl4"~'rl'~m]~. ~ 1,, Grey (1975), Hoggins & 
Steinfmk (1977), Onoda 
& Kato (1991) 

[ R - h ] x [ G ~ ] l ~  "D/41/amdl Ts s  • . . . .  yw e q  l q ,  Jeitschko & Parth6 (1967) 

[MnHSi] -a14v~'~ T,, • ..wP4¢'~'Cq.ql Knott et al. (1967) 

[M2Cu203]~ Zr~  2 : Z ~  Kato, Takayama-Muromachi, 
[CuO2]? Kosuda & Uchida (1988), Kato 
[M = (Bi,Ca,Sr), (1990), McCarron, Subramanian, 
M = (Ca,S0] Calabrese & Harlow (1988), 

Petfirek et al. (1991) 

[Sr2Cu203]x M A { ~ ° : M A { ~  McCarron et aL (1988), 
[CuO2]t Shishido, Ukei & Fukuda 

(1992) 

[Bal~[(Cu,Pt)O3]f ,,aP3~u, :p~m Ukei et al. (1992) 

R m:Pe]7 Onoda, Saeki, Yamarnoto & [Srl,[TiS3], f e31~ 
Kato (1993) 

[Bi2Sr2CuO4][Ol.~ Jv~'rg21b'n121mT, • r r, Yamamoto et al. (1993) 

[Y(O,F)][(O,F)~ r"Ab"~" . m  • '--'P'+'~,r~ Mann & Bevan (1972), 
Bevan & Mann (1975) 

P iT, • CP,"t~I Jung & Juza (1973), [Zr(N,F)][CN,F)]~ At~,~. 
Bevan & Mann (1975) 

[MS]~TS2] [M neT. DP+r = r +.r  + Makovicky & Hyde (1981), 
(Pb,Ag,Sn,Sb,Fe), Williams & Hyde (1988), 
T= (Sn,Sb,Fe)] Wang & Kuo (1991) 

[M(OH)21~[TS2] ~ ]  :P~,~ Evans & Allmann (1968) 
[M = (Mg,A1); IT = (0,0,~)] 
T = (Fe,Cu)] 

[II~TrF] ~m . . . .  ~ / .  r T 1 . 2 r J  T s  Johnson & Watson (1976), 
Janner & Jansen (1980) 

[Br]~[TTF] ~-~' c~m.rt .r~'c~mIt La Placa, Cortield, Thomas 
& Scott (1975) 

[II~[BEDO-TrF~ PP~:PP~ Petfi~ek et al. (1991) 

[I]~[BzgM2(CHCI3)] r n ~ "  nei~z,.,,rll • ~ TI, Coppens, Leung, Ortega, 
(M = K,NH4,Na) Young & LaPorta (1983) 

P T-P T Lyubovskaya et al. (1987) [Hg]~[ETBr2], r2. r2 

[Hg~E'r(SCN)~]t ,,~T. ,~T ,- T.r  T Petfi6,ek et al. (1991) 

Brown et al. (1975) 
Pouget et al. (1978) 

t Determined by higher-dimensional analysis. 
:~ e .2 = 2C .2 (capital letters mean axes in original papers). 
§ a *l ---- B *t ,  a . 2  = B .2 ,  b* - A * .  

¶ [VI,[Ge], [Mo]~[Ge], [Irl~[Ge], [Crl~[Ge], [Te]~[Si], [Rhl , (Ga] ,  [Ir]x[Ga], [Ru],[Sn]. 

In commensurate cases with a long period, there are 
many unobserved satellite reflections, while the 
number of parameters grows with the period. This 
causes special correlation between structural param- 
eters and leads to a singular normal matrix in the 
least-squares method. In incommensurate cases, a 
main reflection always consists of contributions from 
the main reflection of a substructure and the main or 
satellite reflection of the other substructure. As a 

result, we cannot obtain the contribution from only 
the main reflection of a specified substructure. There- 
fore, it is difficult to determine accurately an average 
(unmodulated) substructure from the main reflection, 
in contrast to the usual modulated structure. 

A modem technique developed recently removes 
difficulties such as these. It starts from the higher- 
dimensional description of the (incommensurate) 
modulated structure made by de Wolff (1974), where 
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the modulated structure is described as a periodic 
structure in higher-dimensional space (superspace) 
and its symmetry is specified by a higher-dimensional 
space group. After that, the symmetry of modulated 
structures was formulated as the theory of super- 
space groups by Janner & Janssen (1979). This is well 
known and has been widely used in the analysis of 
modulated structures. In 1980, the theory was 
extended to cover composite crystals (Janner & 
Janssen, 1980). As stated above, the composite crys- 
tal shows at least two sets of three-dimensional 
sublattices of main reflections. In order to index 
these reflections, we need 3 + d basis vectors as in the 
modulated structure. It has been shown that, if the 
minimal number of basis vectors needed for indexing 
the diffraction pattern is 3+d ,  the structure is 
described as a periodic structure in (3+d)-  
dimensional space, similar to the modulated struc- 
ture with d-dimensional modulations. The descrip- 
tion is, however, different from that of the 

C*  

• : • 

• . . -  . ° . ° .  

. . . . .  ° . . . . . .  
• . . . o , 

. . . . .  e .  i ! :  : 
!: i i :  i t t t : : i !  :! 
• . . .  . • • . .  

. - .  

. . . .  . • • . .  . .  

• i i i e "  
• : : : • 

.... • . . : .  

• ~ • 

. . . .  2a-1 

(a )  

O *  

.t 

:: 
: . !: 

• ; :  

o .  . o  

- ;  : .  • 

ii ; .i : :. 
.. . .  . :. : ~. 

: : : a *  

o. .- ~ 

: ;  O ;: :: 

"' i ' ; .  ii : ! 
• . 

." . 
• . . . 

i" 
a . 1  

_ . _ ~  a.2 

(b) 
F i g .  2 .  D i f f r a c t i o n  p a t t e r n s  o f  [PbSI~ [ -VS2]  i n  ( a )  (hOlm) a n d  

(b) (h I lm) p l a n e s .  

modulated structure in the embedding of the three- 
dimensional structure into the (3+d)-dimensional 
one. This is not unique (Janner & Janssen, 1980) and 
an infinite number of equivalent embeddings exists 
(Yamamoto, 1992). It can be shown that there exists 
an embedding equivalent to the standard one of the 
modulated structure for every modulated substruc- 
ture (van Smaalen, 1991b; Yamamoto,  1992). This 
ensures that we can choose an embedding appro- 
priate for a specific substructure, depending on the 
substructure. In this treatment, each modulated sub- 
structure is recognized as the usual modulated struc- 
ture and every technique for the modulated structure 
is applicable to it. Since each modulated substructure 
is a usual modulated structure, its symmetry is speci- 
fied by the superspace group of the modulated struc- 
ture. Thus, the analysis of the composite crystal 
structure reduces to the analysis of each modulated 
substructure based on its own superspace group, 
though all modulated substructures have to be 
analyzed simultaneously. 

For one-dimensionally modulated structures, a list 
of all relevent superspace groups is given (de Wolff, 
Janssen & Janner, 1981; Yamamoto,  Janssen, Janner 
& de Wolff, 1985). This is applicable to the 
modulated substructure in the composite crystal 
(Janner & Janssen, 1980; van Smaalen, 1989). The 
total symmetry is specified by a superspace group 
that is equivalent to that of the modulated substruc- 
ture as a higher-dimensional space group (van 
Smaalen, 1991b). The classification of superspace 
groups for the modulated structure is finer than that 
of higher-dimensional space groups so the super- 
space groups of substructures may not be equivalent 
to each other as the superspace group. It was pro- 
posed that, in a composite crystal with two substruc- 
tures, the symmetry of the composite crystal be 
specified by a pair of the superspace groups of 
substructures (Yamamoto, 1992). Similarly, for those 
with three substructures, a triplet of superspace 
groups is available. They are equivalent as for the 
higher-dimensional space group, as mentioned 
above. 

Possible superspace groups of substructures can be 
determined by analysis of the average substructures, 
according to the classical method, and by considera- 
tion of the extinction rules including satellite reflec- 
tions, as in the usual modulated structure. In the 
present case, the main reflection of one substructure 
is the main or satellite reflection of the other. There- 
fore, even when satellite reflections are not observed, 
possible superspace groups are limited to a few cases. 
A difficulty in determining the superspace groups of 
substructures is that a convenient setting of the 
reciprocal unit vectors is often nonstandard, as the 
setting in the modulated structure and corresponding 
extinction rules are not found in the table of de 
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Wolff, Janssen & Janner (1981). Extinction rules for 
all nonstandard settings in the four-dimensional case 
were recently calculated (Yamamoto, 1992) to 
improve the situation. 

The first application of the theory of Janner & 
Janssen (1980) to the analysis of composite crystals 
has been made by Kato (1990). A newly developed 
computer program for the refinement of composite 
crystal structures showed that, even in a case where 
no satellite reflections are observed, the introduction 
of modulations reduces the R factor of the main 
reflection remarkably. This proved that the average 
structure can be determined accurately only by 
taking into account the modulation in each substruc- 
ture. Nowadays, at least three computer programs 
have been developed for the analysis of composite 
crystal structures. Two of them are based on the 
theory of Janner and Janssen (Kato, 1990; Pet~i~ek, 
Maly, Coppens, Bu, Cisarova & Frost-Jensen, 1991), 
while the other one is based on a simplified theory in 
which the settings of the unit vectors are strongly 
limited (Yamamoto, 1992). These three are, however, 
equally applicable up to six-dimensional cases. (A 
program by Kato is also applicable to more-than-six- 
dimensional cases). These are for single-crystal data, 
but one program for powder data was written and 
applied to the superconducting oxide [Ba2Sr2Cu- 
O4][O]y mentioned above (Yamamoto, Takayama- 
Muromachi, Izumi, Ishigaki & Asano, 1993). 

The method based on the superspace group and 
description in superspace is as efficient for commen- 
surate composite crystals as it is for commensurate 
modulated structures, especially when the higher- 
order satellite reflections are systematically unob- 
served. Such an analysis has been made by Onoda & 
Kato (1991) for [Ba]9[FeS2]8 and [Ba]10[FeS2]9. In 
these cases, the longest axis of the supercell is not 
very long ( - 4 0 - 4 5  A) but in some electron com- 
pounds it ranges as high as 300 .~, as mentioned 
before, and many satellite reflections are unobserved. 
In such cases, the structure can be analyzed as an 
incommensurate composite crystal based on a super- 
space group, as discussed later. Thus, the method is 
applicable to analyses of all kinds of composite 
crystals and is efficient for all cases. 

It is known that there exists an exceptional case 
where one substructure is related to the other by a 
symmetry operation. The simplified theory is not 
applicable to it. Such cases are, however, very rare - 
so far only one, [Hg]x[Hg]x[AsF6], is known. There- 
fore, the simplified theory is practically general. 

A general theory of symmetry is reviewed in § 2. 
§ 3 is devoted to the unified setting and symbols of 
superspace groups. These give a simplified treatment 
that is applicable to all cases excluding that men- 
tioned above. In the subsequent sections, the simpli- 
fied treatment is described. In § 4, structure-factor 

calculations are discussed. § 5 describes problems and 
approximations specific to the commensurate com- 
posite structure analysis in superspace. The deri- 
vation of the superspace group from the space groups 
of substructures and many examples of super- 
space groups for known structures are given in 96. 
Finally, the refinement method is discussed in § 7. 

2. Symmetry of the composite crystal 

The composite crystal is a crystal consisting of 
several interpenetrating substructures with mutually 
incommensurate periods. Therefore, the diffraction 
pattern is not indexable by three reciprocal-lattice 
vectors and three integers (Fig. 2). We need, in 
general, 3 + d vectors. So far, cases up to d = 2 are 
known. There exist prominent ('main') reflections 
constructing several sets of three-dimensional 
reciprocal lattices. In some cases, the number of 
vectors necessary to index the main reflections may 
be less than (3 + d) because it is possible for there to 
exist additional modulations that are independent of 
the mutual incommensurability of the substructures. 
Janner & Janssen (1980) showed that such a modula- 
tion may be present in [Hgl~[Hg]x[AsF6] and dis- 
cussed a general case, giving a general theory. In the 
following, we do not consider such additional modu- 
lations, for ease of understanding. This does not 
limit the applicability of the theory because most 
composite crystals do not show such modulations. 

In addition to main reflections, weak satellite 
reflections are observed. In the limited cases men- 
tioned above, these are also indexable with the same 
basic vectors as those needed for main reflections: 

a*, a*, .. . ,  a*+d. (1) 

The diffraction vector h is written as h = V3+d hia*, / - - - i =  1 

where h~, h2, . . . ,  ha÷d are integers (generalized Miller 
indices). This implies that the structure can be 
described by a periodic structure in (3+d)- 
dimensional space (superspace); the real three- 
dimensional structure is a three-dimensional section 
of this structure, the same as the modulated struc- 
ture. The structure in superspace is, however, differ- 
ent from the modulated structure because, in the 
latter, main reflections are on one three-dimensional 
reciprocal lattice, while the composite crystal shows 
two or more sets of three-dimensional lattices of 
main reflections. Such a crystal structure in super- 
space can be constructed as follows. 

The basic vectors [(1)] are regarded as the projec- 
tions of unit vectors in superspace onto the usual 
three-dimensional space (external space). In the 
modulated structure, the first three vectors are taken 
to be the unit vectors (in reciprocal space) of the 
average structure while, in the composite crYstal, 
these are usually the unit vectors of one substructure 
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though, even if such a choice is impossible, the 
following description is not affected. Since the vec- 
tors of (1) are three-dimensional, a*+j ( j  = 1, . . . ,  d) 
are given by linear combinations of a*, a* and a* 
with real coefficients trjk: 

3 

a * + j =  Z crjka] ( j =  1, 2, . . . ,  d). (2) 
k = l  

From the incommensurability, at least one of %k (k 
= 1, 2, 3) is irrational. 

Without loss of generality, the first three can be 
taken on the external space and the others oblique to 
this space (Janner & Janssen, 1980). Then, the unit 
vectors d* (i = 1, 2, . . . ,  3 + d) in superspace are writ- 
ten as 

d*= (a*, 0) ( i= 1, 2, 3), (3) 

d*+j = (a*+j, b 9 ( j  = 1, , d), (4) 

where b* ( j  = 1, . . . ,  d) are unit vectors in the d- 
dimensional subspace (internal space) orthogonal to 
the external space. The unit vectors reciprocal to 
those of (3) and (4) are 

d 

d, = ( a , , -  Z ¢rj,bj) (i = 1, 2, 3), (5) 
j = l  

d3+ j = (0, bj) ( j  = 1,.. . ,d), (6) 

where a; and bj are the vectors in the external and 
internal spaces with a*-a j=  6 U (i, j =  1,2,3) and 
b*'bj = 6 o (i, j = 1,2 . . . . .  d). The definitions of the 
unit vectors in superspace [(3)-(6)] are the same as 
those for d-dimensionally modulated structures. 
These give the coordinate systems in reciprocal and 
direct spaces common to all the substructures. 

The unit vectors of the uth sublattice in reciprocal 
space are given by integral linear combinations of (1) 
(Janner & Janssen, 1980): 

3 + d  

a*"= Z (Z~);ka] ( i= 1, 2, 3). (7) 
k = l  

This defines the 3 x (3 + d) integral matrix Z ~, which 
relates the basic vectors in the vth substructure (v = 
1,2, . . . ,N) to the common basic vectors. The modu- 
lation wave vectors for the vth substructure can be 
chosen as follows. Among diffraction vectors h = 
Z 3 + d l ,  n *  ~= ~,,i* ~, select a vector a *~ that does not belong to 
an integral linear combination of a*~,. . . ,a  *~. (This 
means that the selected vector is not a lattice vector 
of the uth substructure.) Next, choose a vector 
a *~ that does not belong to an integral linear com- 
bination of a ]" , . . . ,  a *~. This is repeated until the dth 
wave vector a3+ d is obtained. In general, the wave 
vectors obtained are expressed by integral linear 
combinations of (1) (van Smaalen, 1991b,c): 

3 + d  
, v  a3+j = Z (V~)jk a*" ( j =  1, 2, . . . ,  d). (8) 

k = l  

The modulation wave vectors of the ~,th substructure 
are written in terms of a*~, a *" and a*": 

3 
~t/,' , " ' ' ,  a 3 + j  = Z (~r~)jkal ~ ( J =  1 2, d). (9) 

k = l  

The matrix o "~ is expressed in terms of ~r and Z ~, 
and V ~ (van Smaalen, 1991b): 

(~.)jk= [(v~' + ~,7)(z~ + z~,~)-%k, (lO) 

where W3 and Wd are the first d x 3 and next d x d 
parts of W while Z~ and Z~ are the first 3 x 3 and 
next 3 × d parts of Z ". The setting of a *~ (i = 1,2,. . . ,  
3 + d )  is not unique. Janner & Janssen (1980) 
employed a primitive cell for a *~ (i = 1, 2, 3), while 
recent structure analyses by Kato (1990) and van 
Smaalen (1991b) used the conventional cell. 
Yamamoto (1992) proposed a strongly limited set- 
ting with a special choice for (1), Z ~ and W, so the 
W", defined below, becomes a permutation matrix. 
This setting is possible for all the known cases except 
[Hg]x[Hg]x[AsF6], where two mercury substructures 
are related by a symmetry operation of the third 
substructure. This is discussed in the next section. 
Equations (7) and (8) are merged into a single 
expression: 

3 + d  

a *~= Z (WV)ika] ( i = 1 , 2 , . . . , 3 + d ) ,  (11) 
k = l  

where (W") ik  = (ZV)ik (i = 1, 2, 3) and (W")3+j.k = 
(V")yk ( j -  1, 2, . . . ,  d).  

Corresponding unit vectors in superspace are 
obtained by replacing a* with d]. 

3 + d  

d*V = Z (W")ikd] ( i=  1, 2, . . . ,  3+d) .  (12) 
k = l  

From the definition of d*[(3) and (4)], it is clear that 
d *~ is projected onto a]  ~ by the projection parallel to 
the internal space. Vectors reciprocal to those of (12) 
a r e  

3 + d  

d~'= F. (W~)~ldk ( i =  1, 2, . . . ,  3 + d ) .  (13) 
k = l  

The matrices W ~ and (W ~)- i also transform coordi- 
nates, xi, referred to di, and indices, hi, referred to d*, 
into corresponding ones of the uth substructure. 

3 + d  

x~. = ~" (W~)ikXk ( i=  1, 2 . . . . .  3 + d ) ,  (14) 
k = l  

3 + d  

h~= Z (W")~lh k ( i=  l, 2, . . . ,  3 + d). (15) 
k = l  

Each atom in the uth substructure is continuous in 
the subspace spanned by d~ +j ( j  = 1, 2, . . . ,  d). Then, 
the atomic coordinates x~', x~ and x~ are continuous 
functions of x~+j ( j  = 1, . . . ,  d). Since tl~+j ( j -  1, 2, 
. . . ,  d) are orthogonal to d *~ ( i - 1 ,  2, 3) and the 
latter are fixed by Z ~, the matrix Z ~ determines the  
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subspace where the atoms of the ~,th substructure are 
continuous (van Smaalen, 199 lb). 

In the composite crystal, each substructure is 
modulated because of the interaction between sub- 
structures. The amplitudes of the displacement waves 
in each substructure are always parallel to the exter- 
nal space. An example of a one-dimensional case 
described in two-dimensional space is shown in 
Fig. 3. 

The resulting composite crystal structure is peri- 
odic in superspace along 3 + d directions with the 
fundamental periods di (i = 1, 2, . . . ,  3 + d). The 
symmetry of the (3 + d)-dimensional crystal is there- 
fore specified by a (3 + d)-dimensional space group 
(superspace group). The setting of the wave vectors 
for each substructure is not unique, as in the 
modulated structure. One possible set of wave vec- 
tors can be obtained by the procedure mentioned 
above, but these wave vectors are equivalent to 
others that are different from the original ones by 
reciprocal-lattice vectors of the vth substructure (in- 
tegral linear combinations of a*", a*" and a*~). 
Superspace groups in different settings as mentioned 
above should be equivalent, though the equivalence 
relations (sufficient conditions) suitable for compo- 
site crystals are not known. 

~ V e 

(a) 

v ! 

S i  Z > Dlf< ¢ 
/ 

V e 

¢ ) 

¢ i 
to) 

Fig. 3. Two equivalent representations of the same composite 
crystal. The sections on the external space V e give the same 
structure. 

3. Unified setting and symbols of superspace groups 

In the unified setting of the unit vectors describing 
the composite crystal in superspace (Yamamoto, 
1992), we take all the basic vectors a *v (i = 1, 2, . . . ,  
3 + d) among the set of lattice vectors of main 
reflections [(1)], that is, one of a* (i = 1, 2, . . . ,  3 + d). 
Then, the matrix W ~ becomes a permutation matrix 
P V. In the following, a]  ~, a~ ~, a~ ~ are written as a *~, 

~b' • • b *~, e *~ and a3+s (J = 1, 2, .., d) as kf  (j = 1, .., d) 
for convenience. All composite crystals known so far 
are of either the type I or the type II discussed by 
Yamamoto (1992), where two or one in (1) are 
common to all the substructures. For example, in the 
simplest case of type I, we can take a*, b*, e .1 and 
e .2 to index the diffraction pattern and recognize 
them as the projections of the unit vectors in the 
four-dimensional lattice onto the external space, 
where a* and b* are the unit vectors common to the 
two (average) substructures and e .1 and e .2 are the 
third unit vectors for the first and second substruc- 
tures. As stated above, each substructure is 
modulated by the period of the others. The modula- 
tion wave vector for the first modulated substructure 
is therefore e .2, while that for the second is e*l; k I = 
e *2 and k 2 e .1 Then, W ~ = P~ [1,2,3,4~ W 2 = " "-- t l ,2 ,3 ,41 - -  ( 1 ) ,  
_ p2 t1,2,3,4~ (3,4). 
- -  "-- \1 ,2 ,4 ,3/  - "  

A similar consideration can be made for a case of 
type II. We consider a simple case with a *~, a .2, b .1, 
b .2, e*l=e*2,  which appears in valleriite 
{[(Mg,A1),(OH)2]~[(Fe,Cu)S2], Evans & Allmann 
(1968)}. In this case, the wave vectors of the modula- 
tion waves for the first substructure are a .2 and b .2, 
while those for the second are a .1 and b .1. That is, 
the unit vectors of the ~,th substructure and wave 
vectors of the modulation waves, a *~, b *~, e *~, k~', 
k~, are obtained from a .1, b *~, e .1, a .2, b .2 by the 
permutation P~, where p l  /1,2,3,4,5% p2 = 1,1,2,3,4,5/ --" ( 1 )  and = 

(~.2,3,4,5x (1,4)(2,5). In particular, we take the 4,5,3,1,2/ ~-" 

identity permutation for the first substructure. This 
simplifies the treatment of composite crystals in 
superspace. We consider the five-dimensional 
reciprocal lattice, the unit vectors of which are pro- 
jected onto the independent basic vectors selected 
above (a *l, b .1, e .1, a .2, b*2). Then (a *~, b *~, e *~, k[', 
k~.)= [d*~', d*~, d*~, d*~, d*~] e=  [PV(d*l, d*2, d*3, 
d*4, d*5, d*6)] e, by definition, where the superscript e 
indicates the external component of a five- 
dimensional vector. 

The superspace group symbol for the ~,th substruc- 
ture (appearing in the superspace group of the com- 
posite crystal) is obtained from that of the first 
substructure by the permutation P~, because the 
permutation matrix transforms the matrix represen- 
tation of a symmetry element in the first substructure 
into the corresponding one in the ~,th substructure 
(see the next section). This means that the superspace 
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groups of modulated substructures are equivalent to 
each other as a higher-dimensional space group (van 
Smaalen, 199 lb). 

In the unified setting mentioned above, the selec- 
tion of unit vectors is strongly limited, because the 
unit vectors of each modulated substructure in the 
reciprocal space are chosen from a set of reciprocal- 
lattice vectors of average substructures. Further- 
more, the same vector is used when an axis is 
common to several substructures. Therefore, the set- 
ring of the unit vectors is unique except for the 
ambiguity in the choice of the unit vectors in each 
average substructure. On the other hand, such unit 
vectors may lead to a superspace group in a nonstan- 
dard setting, as is shown in §6. 

The symmetry of composite crystals can be 
expressed by a superspace group for the modulated 
structure (Janner & Janssen, 1980). However, this 
causes difficulty in some cases. For the setting in Fig. 
3(a), the first substructure gives the main reflections, 
which are on the external space (Fig. 4a). In this 
setting, we have some superspace group, while the 
other setting in Fig. 3(b), where the first three vectors 
in (1) are taken from the unit vectors of the second 

.:Iii   [l.illl 
I'TT2"Ti ;' 'TPl'j " / ' / / / I  / / / / / ' / "  
////I/ 

V e 

la) 

v I 

,\,\-'\_",,.\\\\,c, 

4 \ \ \ \ \ \ \ \  

v e 

(b) 

Fig. 4. Diffraction patterns of the two two-dimensional crystals in 
Figs. 3(a) and (b). The observed diffraction patterns corre- 
sponding to the structure on the external space V ~ in Figs. 3(a) 
and (b) are obtained by the projection parallel to the internal 
space W. These give the same pattern. 

average substructure, may give a superspace group 
that is not equivalent to the former because the 
reflections coming from the second substructure are 
regarded as the main reflections. For example, in a 
case shown below, the first setting gives the super- 

D R 3 m  (see space group ,,,DP31c111, while the second gives - l= 
§ 6). These two superspace groups are nonequivalent 
under the equivalence relation for the modulated 
structure (de Wolff, Janssen & Janner, 1981). 
Furthermore, if we allow a setting different from 
these two, we may obtain another superspace group. 

The symmetry of a composite crystal with two 
substructures is properly specified by two superspace 
groups, which give the symmetries of two modulated 
substructures. In the present case, it is written as 
RP31c. DR3m Similarly, in a composite crystal with 111 ~t Is" 
three substructures, a triplet of the superspace-group 
symbols for three modulated substructures is used. 
In this notation, each substructure is treated equiva- 
lently, because the interchange of the first and second 
substructures simply means the interchange of the 
two superspace-group symbols. Therefore, these two 
superspace groups are called equivalent. This gives 
the necessary condition for the equivalence relation 
of the superspace groups for composite crystals: the 
superspace groups obtained from each other by the 
interchange of substructures are equivalent. A pos- 
sible definition of equivalence in the superspace 
groups of composite crystals may be as follows. If 
the pair (or triplet etc.) of superspace groups is 
equivalent to the other pair (triplet etc.) as the 
superspace group under the restriction of a unified 
setting, then they are equivalent to the superspace 
group of the composite crystal. A complete theory of 
the equivalence is, however, not known. 

As mentioned above, the choice of unit vectors is 
restricted in the unified setting. As a result, the 
setting may be nonstandard, not only for the super- 
space group of the modulated substructure but also 
for the space group of the average substructure. We 
have to use, for example, a face-centered lattice for a 
monoclinic structure in some cases and a wave 
vector, such as k = a* + b* + ye*, for which the 
symbol of the superspace group is not given. (See 
§ 6.) Several symbols have been introduced for four- 
dimensional superspace groups in addition to those 
introduced by de Wolff, Janssen & Janner (1981). 
Additional rational components of the wave vector k 
and all the reflection conditions for these wave vec- 
tors have been given (Yamamoto, 1992). The reflec- 
tion conditions are, however, easily derived, as 
follows. 

These wave vectors appear only when the average 
substructure has a centered lattice. Note that rational 
components appear when the wave vector of the 
modulation wave k: is at the Brillouin-zone bound- 
ary of the average substructure. A 1 in the rational 
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component means that the average substructure has 
a centered lattice because, in the primitive lattice, the 
Brillouin-zone boundary is at 1/2 along all the princi- 
pal axes. When the rational component is 1/2, the 
corresponding axis in the direct space is doubled (de 
Wolff, Janssen & Janner, 1981). The reflection condi- 
tions calculated are those referred to the new unit 
cell. All the reflection conditions for general reflec- 
tions are obtained from those of the Bravais lattice 
of the average substructure or from the cell doubling 
mentioned above. In the following, the unit vectors 
of the original cell and indices referred to them are 
represented by capital letters, while those to the new 
cell are represented by small letters. For example, 
consider the case where the rational component is 
I 1 (~, , 0) and the average structure has the A-centered 

lattice. Then, A* = 2a*, B* = b*, C* = c* and K = a* 
+ b* + k. (k = yc*.) From h = HA* + KB* + LC* + 
MK = ha* + kb* +/c* + m k  and K + L = 2n, reflec- 
tion conditions h + m = 2n, k + l + m = 2n and h + k 
+ l =  2n are obtained. The reflection conditions 
imply that there are centering translations {E[~,0,0,~},I 1 
{El0,1,1,1} and {~,½,~,0} in the superspace group. 

It should be noted that, in the unified setting, the 
basic vectors [(1)] defining a coordinate system 
common to all the substructures are those referred to 
the new cell mentioned above, while the symbols of 
the superspace groups of substructures are related to 
the original ones. In the usual analysis, from the 
reflection condition referred to (1) and the rational 
and irrational components of the wave vector, the 
lattice type (represented by the prefix and the Bravais 
lattice of the average substructure) can be 
determined. In the superspace group, the same 
reflection conditions for general reflections are 
shared by several lattice types. 

4. Structure factor 

If  we use the coordinates referred to d ~, the 
modulated substructure is described in the same 
manner as the usual modulated structure. For a 
(3 + d)-dimensional case, the atom coordinates x~' 
with respect to d~" (i = 1, 2, . . . ,  3 + d) are given by 

x~' = 2~ + d*~" u~(~ ,  . . . ,  X~+d), (16) 

where 2/' (i = 1, 2, . . . ,  3 + d) are the atom coordi- 
nates for the uth substructure, obtained from the 
coordinates 2i in the fundamental structure with 
respect to dg by the matrix W" [see (14)] and u ~ is the 
displacement from the fundamental structure parallel 
to the external space and a periodic function of ~+~ 
(i = 1, . . . ,d).  (See Fig. 3.) The modulation functions 
of the uth modulated substructure have the same 
forms a s  the corresponding ones in the usual 
modulated structure. 

The structure factor is given by 

N 

Fh = Y (vl/v~)F~,. (17) 

1 1 

Fy, = F. Y . a ~ f  d ~ "  ... f d ~ . a f ~ ' ( h e ) P  ~" 
{nvl ~} g o o 

3 + d  
v i., /.Lv ~ v  i~, x e x p [ -  Y. h i ( R B  R)ikhk 

i ,k  = 1 

3 + d  

+ 2zri Z h'i(R"x'")i+hYr'i], (18) 
i = l  

where {R~[r ~} runs over symmetry operators and 
over independent atoms of the vth substructure. The 
multiplicity, atomic scattering factor, occupation 
probability and temperature factor of the /zth 
independent atom are denoted a ~'~, f ~ ,  P ~  and 
B ~ ,  respectively. The rotation matrix and the non- 
primitive translation vector are related to those in 
the common coordinate system, Rij and rt, as (van 
Smaalen, 1989) 

3 + d  

(R~)0 -- 2 (W"),kRk,(W")ff I (19) 
k , l =  1 

and 
3 + d  

r ;= 2 (w%~j. (20) 
j = l  

In particular, in the unified setting, these quantities 
are simply related by a permutation matrix P~ 
instead of a general integral matrix W ~. The struc- 
ture factor of the vth substructure (18) has the same 
form as the corresponding formula for the usual 
modulated structure (Yamamoto, 1982a) because 
each modulated substructure is the usual modulated 
structure. The structure factor of the total structure 
[(17)] is the summation of the structure factors of 
modulated substructures with the weight propor- 
tional to the inverse of the unit-cell volume of the 
average substructure v~. Two computer programs by 
Petfi~ek et al. (1991) and Yamamoto (1992) are 
essentially based on (17) and (18) while another, by 
Kato (1990), uses a different expression, in which x7 
(i = 1, 2, 3) and b (J = 1, 2 . . . . .  d) [coordinates re- 
ferred to b b in (6)] are used instead of x~' (i = 1, 2, . . . ,  
3 + d ) .  

In the modulated structure analysis, Fourier 
amplitudes of possible modulation waves are limited 
when atoms are located at special positions in the 
average structure. Then possible modulation waves 
are constrained by the site symmetry as in the 
modulated structure. In order to find possible modu- 
lation waves, we can apply the same method as in the 
modulated structure (Yamamoto & Nakazawa, 1982; 
Yamamoto, 1982b,c; van Smaalen, 1989; Kato, 1990). 
In this case, the superspace group of the modulated 
substructure plays the same role in that substructure 
as the superspace group in the modulated structure. 
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5. Commensurate composite crystals 

As mentioned earlier, there are many commensurate 
composite crystals. It is well known that the 
chimney-ladder structures in electron compounds are 
commensurate composite crystals. For example, in 
[Rh]lT[Ge]22, the a and b axes are common to both 
substructures and the c axes of Rh (c l) and Ge (c 2) 
have a rational ratio, 17c t =22c  2, while, in 
[Mn]15[Si]26, 15c ] =  26c 2 (Fig. 5). These are usually 
analyzed as the superstructure based on the space 
group. 

This can be described in superspace. Then, each 
atom is not continuous along any direction because 
of the commensurability of the wave vectors. The 
symmetry of commensurate composite crystals is 
therefore given by the space group. This method, 
however, has merits in several cases. When the 
modulation wave of the vth substructure k ' ,=  (/~a *" 
+ l a b * " +  13c*V)/L " has a large denominator L ~, 
higher-order satellite reflections are not observed in 
many cases. In such cases, the classical analysis has 
difficulty because, in order to obtain weak intensities 
for unobserved satellite reflections, highly correlated 
atom positions have to be considered, while the 
number of parameters increases with L',. On the 
other hand, the description in superspace easily gives 
such a structure by neglecting higher-order harmon- 
ics in the modulation waves. This reduces the 
number of parameters and makes the analysis fea- 
sible. 

Many unobserved higher-order satellite reflections 
make the determination of the absolute phase of 
modulation waves difficult. In order to fix the com- 
mensurate structure, the determination of the abso- 
lute phase is necessary, in contrast to the case for the 

incommensurate modulated or composite crystal 
structure. This is because, even if the modulation 
wave is the same, the atoms are at discrete points on 
the modulation waves. Therefore, the absolute phase 
shift of all the modulation waves gives a different 
structure (Figs. 6a and b). The determination of the 
absolute phase is, however, difficult, for the fol- 
lowing reason. As is shown in Fig. 7, each observed 
reflection is the sum of an infinite number of reflec- 
tions parallel to the internal space V ~. (For any 
integer n, h"  - n i l ,  k ' ,  - n/z ,  l', - n13, m "  + n L "  are 
superposed on h ' ,k ' , l ' ,m"  by the projection.) When the 
phase is shifted by ~o',, the structure factors of the 
mth-order satellite reflections are multiplied by an 
additional phase factor exp(2~'im',~o',), leaving its 
absolute value unchanged. As a result, the phase 
difference changes the observed intensity. However, 
if one of the superposed reflections is very strong and 
the others are negligibly weak, the absolute phase 
change is not reflected in the observed intensity. 
Therefore, the determination of the superstructure is 
difficult in such a case. (The analyses based on 
different space groups sometimes give similar R fac- 
tors). However, the modulation wave can be 
determined by regarding the commensurate structure 
as an incommensurate one. This is called an incom- 
mensurate approximation for the commensurate 
structure. Then, the structure factor for the incom- 
mensurate composite crystal [(18)] and a superspace 
group are employed. This analysis is easier than that 
based on the description in superspace and on the 
space group mentioned above, because the analysis 
includes less parameters in most cases. 

It is noted that the indexing of reflections is ambig- 
uous in this case because of the superposition of 
reflections mentioned above. In the analysis, the 
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Fig. 5. Diffraction patterns of the commensurate chimney-ladder structure [Mn]~s[Si]26. The three reciprocal planes are (a) (hk00), (b) 

(hOlm) and (c) (hhlm). The unit vector e* of the superstructure is c't/15 or c'2/26. Note that the higher-order satellite reflections of the 
composite crystal are not observed. 
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lowest satellite index is employed for each reflection: 
- n < m ~ < n with n = LU2 (L ~ even) or - n < m ~ < 
n with n = (L ~ -  1)/2 (L ~ odd). (The zero-order sat- 
ellite reflection means the main reflection.) Then, 
harmonics higher than the nth order can be dropped 
in the modulation wave. Except for this point, the 
analysis in the incommensurate approximation is the 
same as that for the usual incommensurate compo- 
site crystals. 

I 
V 

(a) 

V e 

V I 

(b) 

Fig. 6. Commensurate composite crystals. The positions corre- 
sponding to the points on the external space are denoted by 
dots. Two different sections (a) and (b) give different structures. 

/ I / / / /  
'Ill~ 
f lll.Ll Flllll. 
"IPTT"Ti TT"TTf l 

I / //I/ 
///I// 

V e 

Fig. 7. Diffraction pattern of the composite crystals shown in Fig. 
6. Note that an infinite number of reflections is projected onto 
the same position in the external space V ~. 

In order to obtain the structure factors of com- 
mensurate composite crystals, the contributions from 
all superposed reflections have to be summed up. 
This leads to the slightly different structure-factor 
formula where the integration in (18) is replaced by 
summation over the points within a period along the 
internal space (Yamamoto, 1982a). Provided that the 
first wave vector is commensurate [k~" = (l~a *~ +/2 b*v 
+ lae*~)/L ~] and the others are incommensurate, it is 
written as 

L "  1 1 

r ~ =  Z ~.a~'~(1/L~) Z fd2~ ~ ... f d2~Y~dfl'~(he)p ~ 
(R~I~  -} ~ j =  1 o o 

I 3 d 
x exp - ~ h~(R~B~R~)ikh~ 

ik= l 

lp 1., + 27ri Z hT(R"x~'~), • + hi ri , (21) 
i=l 

where 2 ~ =  Y-a=,,-u.,.i""-~'"+j/L" and {R~I z~} runs 
through all the symmetry operators with 

3 

Z Gr~iz i - -~  (mod 1/L~), (22) 
i = 1  

which correspond to symmetry operators in the 
space groups (Yamamoto & Nakazawa, 1982). 

There is another approximation, which lies 
between the two methods mentioned above. In this 
approximation, (21) is used and {R"Iz "} runs symme- 
try and pseudosymmetry operators. The latter are 
defined as follows. Some symmetry operators in the 
superspace group transform a point (an atom posi- 
tion) on the modulation wave into a point where 
there is no atom (an unoccupied position). There- 
fore, they are not symmetry operators in the present 
case. We consider a pseudosymmetry operator, 
which transforms an atom into an atom position 
nearest to the unoccupied position on the same 
modulation wave. Then, ~ in (16) and (21) is 
replaced by X~jV-l-A~,~j, where Ax~j'-(RV)~llX 
(X/a_-ltr~'i~'~ ' - z~) (mod 1/L~). From (22), A ~ j  is zero 
in symmetry operators of the space group but non- 
zero in pseudosymmetry operators. 

Such an approximation was used in the analysis of 
[Ba]9[Fe2S4] 8 a n d  [Ba]10[Fe2S4]9 on the basis of the 

14ram 14bin superspace group L l ss : L ls~. The superspace group 
1 1 1 ! has a centering translation {E[~, ~, ~, ~}. For [Ba]9- 

[Fe2S4]s, k l = 8 e * l / 9  and k2=9e*2/8, while in 
[Ba]lo[Fe2S4]9, k I =9e '1 /10 and k 2=  10e'2/9. For 
these wave vectors, the centering translation is a 
pseudosymmetry operator. This shows that the space 
group has no centering translation. A similar con- 
sideration leads to the space group P4nc for the 
former and P4cc for the latter. The corresponding 
centrosymmetric space groups are P4/mnc and 
P4/mcc. If we consider the centrosymmetric super- 
space groups, rl4/mmm, rl4/mbm "~ I 1 s ~ • 1-" I r s ~, these space groups are 
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derived as the highest symmetry groups from the 
same condition. In this case, the superspace group 
includes ~), (~), (~), (7). Their 7" 4 depends on the 
selection of the origin in the internal space. From 
(22), they become symmetry operators or pseudo- 
symmetry operators depending on the selection of 
the origin. The shift in the origin along the internal 
space is equivalent to the shift of the absolute phase 
of all modulation waves. Consequently, the space 
group is dependent on the absolute phase of the 
modulation waves. A different consideration was 
proposed by Hoggins & Steinfink (1977), in which 
the possible space groups are derived as the intersec- 
tions of the space groups of the barium and Fe2S4 
substructures, I4/mmm and 14/mcm. The above 
results agree with those of Hoggins & Steinfink. 

Another example is [Rh]lT[Ge]22. This is one of the 
chimney-ladder structures with a long period along 
the c axis widely found in electron compounds 
(Jeitschko & Parthr, 1967). The a* and b* axes are 
common to two substructures while 22c * l =  17e .2. 
Therefore, the wave vector for each substructure is 
commensurate. However, the commensurability is 
neglected when superspace groups are considered. 
The space group of the first substructure, rhodium, is 
I41/amd. The space group of the second one is not 
clear but we may take P4/nnc. The unit vectors a .2 
and b .2 for the second (average) substructure are 
related to those of the first one by a . 2 =  a * l +  b .1 
b . 2 =  - a * ~ +  b .1, but c .2 is incommensurable with 
c *~. (See Fig. 5.) This implies k 1 = (0,0,yl) ~ and k 2 = 
(~, ~, y2) 2. Their independent vectors are a *l, b *~, c *1 
and c .2. The space groups imply h + k + l = 2n for 
hklO, l = 4n for 0010, h = 2n for hkO0, 2h + l = 4n for 
hhlO, h + k = 2n for hkOm, m = 2n for Oklm and h + 
m = 2n for hhOm. These suggest h + k + I = 2n for 
hklm, l = 4n for O0lm, h = 2n for hkO0, m = 2n for 
Oklm and 2 h + l + 2 m = 4 n  for hhlm. A pos- 
sible superspace group is D l41/amd" l / l / P n / n n c  This 1 -  I Tss  • rr - q -fql" 
• 142d I l l / P ~ n 2  D 12~m2. P42c  ~ includes P rrs: and r r  lql /-"i 'sT" W T]I tl~ s u b -  
groups. 

Many electron compounds take one of the space 
groups 1-42d, P4c2 and P-4n2, depending on the 
period along the c axis (Jeitschko & Parthr, 1967; 
Knott, Mueller & Heaton, 1967). They are explained 
by the relation of the superspace group and the space 
group in the commensurate cases discussed above. 
When 3'~ = m/n (m and n being integers), they are 
determined by the parities of m and n. There are 
three cases with: m even, n odd; m odd, n even; and 
m odd, n odd, corresponding to the three space 
groups (Table 2). 

As is clear from the above discussion, the analysis 
based on the pseudosymmetry or in the incommen- 
surate approximation has fewer parameters than that 
based on the superstructure. Even when the structure 
can be analyzed on the basis of the true space-group 

Table 2. Space groups of commensurate chimney- 
ladder structures deduced from the superspace group 

e l4~/_amd, b f /  P4 /nnc  
1 l s s  • zr  q T q l  

The space groups are classified into three cases according to the 
parities of  m and n (m even, n odd; m odd, n even; m odd, n odd) 
in the wave vector k ~ = (0, 0, m / n ) .  

Compound Space group Wave vector 

[Mo]9[Ge]16 1-42d (0,0,16/9) 
[Mn]~5[Si]26 142d (0,0,26/15) 
[Rh],7[Ge]22 1-42d (0,0,22/17) 

[Tc]4[Si]7 P4c2  (0,0,7/4) 
[Rh]~0[Ga],7 P4c2 (0,0,17/10) 
[Ru]2[Sn]3 P4c2 (0,0,3/2) 
[Ir]4[Ge]5 P4c2 (0,0,5/4) 

[V]~v[Ge]3~ P4n2 (0,0,31/17) 
[Mo]~3[Ge]23 P4n2 (0,0,23/13) 
[Cr]H[Ge],9 P4n2 (0,0,19/11) 
[Mn]t~[Si],9 P4n2 (0,0,19/11) 
[Ir]a[Ga]5 P4n2 (0,0,5/3) 

symmetry, these approximations are efficient at least 
as the first approximation. It is clear that the space- 
group symmetry depends on the wave vector while, 
in these approximations, the structure can be 
analyzed with the same symmetry. It should, how- 
ever, be noted that they are a good approximation 
only when the higher-order harmonics are weak 
enough, as in the case of [Mn]ls[Si]26, shown in 
Fig. 5. 

6. Superspace groups of composite crystals 

The determination process of the superspace group is 
similar to that of the modulated structure. The 
rotational symmetry of the diffraction pattern 
determines the point group and the nonprimitive 
translations are obtained from the systematic extinc- 
tion rules. The first step is the analysis of the average 
substructure based on main reflections of that sub- 
structure. As stated above, this is affected by the 
modulation of the other substructure• However, our 
experience shows that a rough average substructure 
can be determined from main reflections. The posi- 
tion of the substructure relative to the other sub- 
structure is determined by the main reflections 
common to both substructures. From such an analy- 
sis, the space groups of the average substructures are 
given. 

In the next step, we consider the superspace group 
of each substructure. This can be found in the same 
manner as in the modulated structure. Many compo- 
site crystals show no satellite reflections, but the 
main reflection of the other substructure has to obey 
the symmetry requirement of the superspace group 
of the substructure considered• Regarding the main 
reflections of the other substructure as the satellite 
(or main for common main) reflections, we can 
obtain possible superspace groups from the extinc- 
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tion rules. Thus, the symmetry elements of the super- 
space group for each substructure are obtained. 
Then, from the inverse relations of (19) and (20), the 
matrix representation of the symmetry operator with 
respect to the common coordinate system is 
obtained. If different sets of symmetry operators are 
obtained from different substructures, we have to 
take common elements constructing a superspace 
group. Three examples having orthorhombic, trigo- 
nal and monoclinic superspace groups are shown 
below. 

(a) [LaS]x[NbS2]. There are many misfit layer sul- 
fides with two substructures (Wiegers, Meetsma, 
Haange, van Smaalen, de Boer, Meerschaut, Rabu & 
Rouxel, 1990). This is one of them. It was analyzed 
first by the classical method (Meerschaut, Rabu & 
Rouxel, 1989; Meerschaut, Rabu, Rouxel, Monceau 
& Smontara, 1990) and reinvestigated on the basis of 
the superspace group (van Smaalen, 1991a). Two 
substructures have common b* (=  b * l =  b .2) and c* 
(= t2"1 /2  = e  .2) while a .1 and a .2 a re  incommen- 
surate with each other. The first substructure (LaS) 
has the space group Cm2a, while the second has 
Fm2m. Satellite reflections are observed. Diffraction 
patterns are indexable with a .1, b *l,  e *t and k ~ = a .2 
+ b .1 + c'1/2 = (al,  I, ~)1 or with a .2, b .2, e .2 and k 2 
= a . 1  + b . 2  = (ce2, l ,  0 )  2. This implies the superspace 
group ro,,2a. ~,rFm2~ where '?' • i i?. ~v, 1 i? ,  is unknown at present. 
[For the prefix/ ,  see Yamamoto (1992).] When the 
diffraction vector is written as h = ha .I + kb *~ + / e  .2 
+ ma .2, reflection conditions of the space group 
become h + k + l =  2n, h + k + m =  2n, l + m =  2n 
for hklO and Oklm and h = 2n for hk00. The former 
three can be regarded as the reflection conditions for 
general reflections hklm and the last as that for 
hkOm. The latter implies the existence of (0 in the 
first substructure, leading to the superspace group 
F~'r2,, 1. The symmetry elements of the superspace 
group of the second (average) substructure are 
related to those of the first substructure by the 
permutation (1,4) so that the superspace group is 
given by lCm2a, i I F m 2 m  I TTI 1vl T T s .  

Another method of finding possible superspace 
groups is to use the common unit vectors. Then, the 
first substructure gives reflection conditions h + k = 
2n and l =  2n for hklO, h = 2n for hkO0, and the 
second leads to m + k = 2 n ,  k + l = 2 n  and r e + l =  
2n for Oklm. These are combined into h + k + m = 
2n, l + m = 2 n  and h + k + l = 2 n  for hklm and h =  
2n for hkOm. The reflection conditions and the 
irrational parts of the wave vectors (al,0,0) 1 and 
(C1~2,0,0) 2 also give the same superspace group (Ya- 
mamoto,  1992). 

(b) [Ba]x[(Pt,Cu)O3]. This is an example of compo- 
site crystals obtained as byproducts of supercon- 
ducting oxides. Both substructures are indexable 
with the same a* in the hexagonal lattice and e *~ and 

C . 2  a r e  incommensurate to each other. However, the 
second substructure has a rhombohedral  lattice 
spanned by a unit vector ( a * +  b* + e'2)/3 and two 
vectors obtained from it by the threefold rotations 
around the c* axis. The first substructure has the 
space group P31c and the second R3m. The wave 
vector of the first substructure is therefore k I = (I, ~, 
yl) 1 and that of the second is k2=  (0, 0, y2) 2. The 
reflection conditions are h - k - l = 3n for hklm and l 

D P 3 1 c .  D R 3 m  (Ukei, = 2 n  for hhlm, leading to , ,  111. - i s  
Yamamoto,  Watanabe, Shishido & Fukuda, 1992). 

(c) [Bi2Sr2CuO4][O]y. This is not a typical compo- 
site crystal. It was first considered to be a modulated 
structure. The modulated structure model, however, 
necessitates an artificial description, as employed by 
Yamamoto,  Onoda, Takayama-Muromachi ,  Izumi, 
Ishigaki & Asano (1990) or Pet~i~ek, Gao, Lee & 
Coppens (1990). Recently, it was shown that this is 
well described as a composite structure rather than a 
modulated structure, though the displacement of 
atoms in the second substructure is extremely large 
(Walker & Que, 1992; Yamamoto et al., 1993). In 
this case, the second substructure consists of the O 
atoms in the Bi-O layer. The remaining atoms con- 
struct the first substructure. The modulation wave 
vector of the first substructure is k 1= (0, fl, 1 - y )  
with B = 0 . 2 ,  y=0 .0 -0 .6 .  Therefore, this has a 
monoclinic superspace group, though the unit cell of  
the first substructure seems to be orthorhombic. It 
was analyzed on the basis of the superspace group 
with a nonstandard setting for the comparison with 
Bi2(Sr,Ca)3Cu2Os+x. The sublattice of the first sub- 
structure is B centered while that of the second is I 
centered. Its superspace group is NS~/b~ • rrs,nr2/m which 
is equivalent to psi/b: ps~/,~ in the standard setting. 

Similar considerations were made for known com- 
posite crystals. Possible superspace groups are listed 
in Table 1. In the table, valleriite, [M(OH)2]x[TS2], 
M = (Mg, A1), T =  (Fe, Cu), has a five-dimensional 
superspace group Tpe6~m~: Pff67m, where the prefix T 
means (0, 0, ~) (Janner, Janssen & de Wolff, 1983). It 
has a common e* but a .1 and a .2 are incommensur- 
able (Evans & Allmann, 1968). The wave vectors of 
the first substructure are kl = (al,0,½) ~, k~ = (-o~1, 
al,~) ~ In [BiS]x[TaS2] and [BiSe]x[TaSe2], the first 
substructure has two modulation waves along the a* 
axis, of which one is incommensurate and the other 
commensurate (Gotoh, Onoda, Akimoto,  Goto & 
Oosawa, 1992; Zhou, Meetsma, de Boer & Wiegers, 
1992). The former agrees with a .2 but the latter is 
independent of it. The commensurate wave vectors 
are k 2 = 2 a * l / 5  in [BiS]x[TaS2] and k2 = a ' l /6  in 
[BiSe]~[TaSe2]. Their four-dimensional superspace 

D A m 2 m  . D A m 2 m  and ~ ,¢Fm2m . i x F m 2 m  groups a r e  , -  T r l .  r TT! lvi r r l .  lvl  T T l .  In 
[BiS]x[TaS2] (Wulff, Meetsma, Haange, de Boer & 
Wiegers, 1990); a completely incommensurate struc- 
ture with complicated modulations is also found. 
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Examples of composite crystals with three sub- 
structures are found in a series of chromium sulfides 
and selenides with [M3CrX3]x[M3X']y[Cr7XI2] (M = 
Ba, Sr, Eu, Pb and X = S, Se) (Brouwer & Jellinek, 
1977). One of them ( M =  Ba, X =  Se) is commen- 
surate, the others are incommensurate. Their symme- 
try may be given by a unified five-dimensional 
superspace group Ppe6/2m: P~/2m: PQ/2 m or its sub- 
groups. 

An exceptional composite crystal, [Hg]x- 
[Hg]~[AsF6], consists of three substructures, the first 
two of which are related by a symmetry operator. Its 
superspace group is five-dimensional, but one modu- 
lation wave may be independent of the incommen- 
surability among substructures (Janner & Janssen, 
1980). Two mercury substructures have monoclinic 
space groups A2/m and B2/m, while AsF6 has the 
tetragonal one I4Jamd (Pouget, Shirane, Hastings, 
Heeger, Miro & MacDiarmid, 1978). A d-glide plane 
in the space group of the third substructure trans- 
forms the first substructure into the second and when 
the additional modulation is neglected the total 

o~aa (Janner & Janssen, symmetry is equivalent to , ~s 
1980). The superspace group for such a case may be 
given by the superspace-group symbol of the third 
substructure (Janner & Janssen, 1980; van Smaalen, 
1991b) but this symbol does not imply the specific 
features of composite crystals, in contrast to the 
symbol mentioned above. 

In Table 1, 12 compounds (marked with t) were 
analyzed by single-crystal X-ray diffraction on the 
basis of superspace groups. Two cases {[Bi2Sr2- 
CuO4][O]x and [Sr]x[TiS3]} (also marked with t) 
were determined by neutron and/or powder X-ray 
diffraction experiments. For the other cases, the 
superspace groups are derived from the space groups 
of their substructures. As mentioned previously, the 
analysis of average substructures can be accurately 
determined only by taking into account modulation 
waves. Therefore, these superspace groups suggest 
only one possibility for each case and the true sym- 
metry may be its subgroup (or supergroup). 

7. Refinement method 

Since the analysis of composite crystal structures is 
reduced to that of modulated substructures based on 
their superspace groups, our experience for the struc- 
ture refinement of modulated structures is applicable 
to it. So far, many modulated structures have been 
determined by the refinement technique. This was, 
in particular, successful for one-dimensionally 
modulated structures. For two- or higher- 
dimensional modulations, careful consideration is 
necessary in the selection of initial amplitudes 
(Hagiya, Ohmasa & Iishi, 1992). This will also be 
true in composite crystals. In any case, the dis- 

placement from the fundamental structure is 
expanded in terms of a Fourier series and a Fourier 
amplitude of each harmonic is taken as a refinable 
parameter. In some cases, the modulation of the 
temperature factor or occupation probability will be 
needed. In the single-crystal method, we refine the 
average structure first by using main reflections and 
the superspace group, where only the zeroth-order 
harmonic (constant term) is used in the Fourier 
series. The refinement can be made by the conven- 
tional program in two steps. The first step determines 
each substructure individually by using main reflec- 
tions excluding those common to the other substruc- 
tures. Next, the relative positions of the sub- 
structures are obtained from the common reflections. 
However, the program based on the superspace 
description of the composite crystals enables us to 
refine all the average substructures at the same time. 

As mentioned before, even if no satellite reflections 
are observed, the introduction of the modulation 
improves the R factor. One of the problems in this 
case is that we cannot know how many harmonics 
should be used in the modulation wave. Some sub- 
structures may be hard, others soft. More Fourier 
terms will be necessary for the latter than for the 
former. In any case, Fourier amplitudes to be 
included are selected by trial and error. On the other 
hand, if satellite reflections are observed, the corre- 
sponding Fourier terms are first taken into account 
and additional ones are added later by trial and 
error. (Note that the nth-order harmonic of a sub- 
structure mainly contributes to the nth-order satellite 
reflections of that substructure.) For commensurate 
cases, there exists an upper limit to the number of 
harmonics in the modulation wave, as mentioned in 
§5. 

It has been shown that, in complicated modulated 
structures, it is efficient to impose the soft constraint 
on the interatomic distance to obtain smooth conver- 
gence of the least-squares method (Yamamoto, 
Nakazawa, Kitamura & Morimoto, 1984). It is also 
effective for composite crystals, in particular in Riet- 
veld analyses, to complement lack of information 
from powder diffraction data. The penalty function 
for the interatomic distances within a substructure 
can be defined in the same manner as in the 
modulated structure. For that between atoms 
belonging to different substructures, only the lower 
limit can be introduced because they range to infinity 
(Onoda, Kato, Gotoh & Oosawa, 1990; van 
Smaalen, 1991a). To calculate such interatomic dis- 
tances, the coordinates for each substructure need to 
be transformed to a common coordinate system. 
From the inverse relation of (14), we obtain the 
coordinates referred to the common unit vectors 
(which are usually the unit vectors of the first sub- 
structure). From (5) and (6), the external space corn- 
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ponents are x~, x2 and x3, while the internal space 
components tj ( j  = 1, 2, ..., d) are -E3=lcrjixi + 
x3+j. This defines a (3 + d) x (3 + d) matrix M, 
which projects a (3 + d)-dimensional vector into the 
external and internal spaces. The projection matrix is 
given by (Kato, 1990) 

(M)ik  = ~ k  (i <_ 3; k = l ,  2, . . . ,  3 + d) ,  

( g ) 3 + j , k  = --Orjk ( j  = 1, 2, . . . ,  d; k <-- 3), (23) 

(M)3+j ,k  = ~3+j,k ( j  = 1, 2, . . . ,  d; k >- 4). 

The interatomic distance has to be calculated from 
the atom positions with the same tj ( j  = 1, 2 . . . .  , d) 
(see Fig. 3). The distance is obtained from the coor- 
dinates x,- (i = 1, 2, 3) of the vth substructure at 2~'+j 
__ ~ 3 _ v  .-:v d =  - ~k=lCrjk,~k + Y. l(I~a -- cr~Z~)jdk as a function of 
tj (van Smaalen, 1991a, 1992). 

In molecular crystals, the rigid-molecule approxi- 
mation may be applicable. Then, each atom position 
of a molecule is calculated from the position of the 
center of mass and the orientation of the molecule. 
An infinitesimal rotation is represented by a vector 
dO, which is parallel to the rotation axis and has a 
length d~ (~p being the rotation angle). The dis- 
placement of an atom at r from the center of mass is 
given by - r  × dO. This is incorrect for a finite 
rotation but is still a good approximation for a 
small-angle rotation. The vector dO has transform- 
ation properties of the axial vector. On the other 
hand, the displacement of the center of mass is the 
(usual) polar vector (Petfi~ek, Coppens & Becket, 
1985; Petfi~ek & Coppens, 1988). When the molecule 
belongs to the vth substructure, these two vectors are 
periodic functions of ~ + j  ( j  = 1,2, ..., d), the (3 + 
j)th coordinates of the center of mass. This approxi- 
mation reduces the number of parameters drastically. 
Therefore, it will be.efficient at least as the zeroth 
approximation for molecular composite crystals. 

The author thanks Drs M. Onoda and K. Kato of 
the National Institute for Research in Inorganic 
Materials for valuable discussions. He is also 
indebted to Dr Onoda for pointing out many rel- 
evant references. 
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Abstract 

The crystal structure of precipitates in a mixed crys- 
tal of NaF and 1 mol% A1F3 has been studied at 
room temperature using both stationary-crystal and 
rotating-crystal X-ray photographic methods. It has 
been found that almost all the reflections can be 
assigned to a face-centered-cubic (f.c.c.) lattice with 
unit-cell parameter 7.77 A. The main feature of the 
diffraction pattern is that the 311 reflection is very 
strong while the 222 reflection is practically zero, in 
contrast to the case of high-form cryolite, i.e. cubic 
Na3A1Fr. These features are explained by assuming 
an f.c.c, arrangement of A1F6 octahedra that are 
rotated around the (111> axes by about 47 ° from the 
highest-symmetry orientation. It has also been shown 
that the F ions in each octahedron make large 
overlaps with the A1 ion at the center of the octa- 
hedron. A random distribution of rotation axes is 

* A part of this work was done when the author was at the 
Muroran Institute of Technology, Muroran, Hokkaido, Japan. 
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also proposed to conform to the cubic symmetry of 
the lattice structure of the precipitate. 

1. Introduction 

In several previous papers concerning mixed crystals 
of alkali halides doped with divalent cations, we have 
reported segregation of some kinds of metastable 
centers (Miyake & Suzuki, 1954a,b; Suzuki, 1955, 
1958, 1961). As an extension of these investigations, 
it seems interesting to try to use trivalent cations for 
impurity doping. When a trivalent cation replaces a 
monovalent cation constituting a matrix lattice, it is 
accompanied by two cation vacancies and several 
types of dipole interactions may be expected. 

A study of NaF doped with A1F3 was tried 
because: (i) according to the phase diagram shown in 
Fig. 1 (Fedotieff & Iljinskii, 1913),t this system is 

t We have referred to this phase diagram, which is published in 
Phase Diagrams for Ceramists, 4th printing, 1979, The American 
Ceramic Society, Ohio, USA. 
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